A First Course on Kinetics and Reaction Engineering Unit 2. Activity 1 Handout

Problem Statement

Suppose a mixture of 3 moles of steam and 1 mole of carbon monoxide is going to react according to reaction (1) to produce a half mole each of hydrogen and carbon dioxide. The reaction will take place at $250^{\circ} \mathrm{C}$ and 322 psia. Calculate the standard heat of reaction at $250^{\circ} \mathrm{C}$ and 322 psia.

$$
\begin{equation*}
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CO}_{2}+\mathrm{H}_{2} \tag{1}
\end{equation*}
$$

Problem Solution

The standard heats of combustion at 298 K of CO and H_{2} were found in a thermodynamics textbook. Carbon dioxide and water don't have heats of combustion, but their heats of formation at 298 K were found in the same book. The values, in cal mol^{-1}, are as follows:

$$
\begin{aligned}
& \Delta H_{f(298 K), C O_{2}}^{0}=-94,052 \\
& \Delta H_{f(298 K), H_{2} O_{(l)}}^{0}=-68,317 \\
& \Delta H_{c(298 K), C O}^{0}=-67,636 \\
& \Delta H_{c(298 K), H_{2}}^{0}=-68,317
\end{aligned}
$$

Equations (2) and (3) were combined and used, with the values above, to compute the standard heat of reaction at 298 K :

$$
\begin{align*}
\Delta H_{j(298 K)}^{0}= & \sum_{\substack{i=a l l \\
\text { species }}} v_{i, j} \Delta H_{f(298 K), i}^{0} \tag{2}\\
\Delta H_{j(298 K)}^{0}= & \sum_{\substack{i=\text { all } \\
\text { species }}} v_{i, j}\left(-\Delta H_{c(298 K), i}^{0}\right) \tag{3}\\
\Delta H_{1(298 K)}^{0}= & v_{C O, 1}\left(-\Delta H_{c(298 K), C O}^{0}\right)+v_{C O_{2}, 1} \Delta H_{f(298 K), C O_{2}}^{0}+v_{H_{2} O, 1} \Delta H_{f(298 K), H_{2} O_{(l)}}^{0} \\
& +v_{H_{2}, 1}\left(-\Delta H_{c(298 K), H_{2}}^{0}\right) \\
& =(-1)(67,636)+(0.5)(-94,052)+(-3)(-68,317)+(0.5)(68,317) \\
= & 124,447.5 \mathrm{cal} \mathrm{~mol}^{-1}
\end{align*}
$$

The heat capacities of liquid water and gaseous $\mathrm{CO}, \mathrm{H}_{2}$ and CO_{2} were also found in the same thermodynamics textbook. Their values, in cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$, are as follows: $\mathrm{H}_{2} \mathrm{O}=1.0, \mathrm{CO}=6.42, \mathrm{CO}_{2}=$
6.214 and $\mathrm{H}_{2}=6.947$. With these values and the result above, the standard heat of reaction could be found using equation (4).

$$
\begin{align*}
& \Delta H_{j(T)}^{0}=\Delta H_{j(298 K)}^{0}+\sum_{\substack{i=\text { all } \\
\text { species }}}\left(v_{i, j} \int_{298 K}^{T} \hat{C}_{p, i} d T\right) \tag{4}\\
& \Delta H_{j(T)}^{0}=\Delta H_{j(298 K)}^{0}+\sum_{\substack{i=\text { all } \\
\text { species }}}\left(v_{i, j} \hat{C}_{p, i}(T-298)\right) \\
& \Delta H_{1(T)}^{0}=124,447.5+(-1)(6.42)(543-298)+(0.5)(6.214)(543-298) \\
& \quad+(-3)(1.0)(543-298)+(0.5)(6.947)(543-298) \\
& \Delta H_{1(543 K)}^{0}=123,751.82 \mathrm{cal} \mathrm{~mol}^{-1}
\end{align*}
$$

